Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({x}^{2} + 1)(1 - ln(x)) - 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - x^{2}ln(x) + x^{2} - ln(x) - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - x^{2}ln(x) + x^{2} - ln(x) - 1\right)}{dx}\\=& - 2xln(x) - \frac{x^{2}}{(x)} + 2x - \frac{1}{(x)} + 0\\=& - 2xln(x) + x - \frac{1}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - 2xln(x) + x - \frac{1}{x}\right)}{dx}\\=& - 2ln(x) - \frac{2x}{(x)} + 1 - \frac{-1}{x^{2}}\\=& - 2ln(x) + \frac{1}{x^{2}} - 1\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return