Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{x}^{6}}{(x + {x}^{2} + {x}^{3} + {x}^{4} + {x}^{5})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{6}}{(x + x^{2} + x^{3} + x^{4} + x^{5})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{6}}{(x + x^{2} + x^{3} + x^{4} + x^{5})}\right)}{dx}\\=&(\frac{-(1 + 2x + 3x^{2} + 4x^{3} + 5x^{4})}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}})x^{6} + \frac{6x^{5}}{(x + x^{2} + x^{3} + x^{4} + x^{5})}\\=&\frac{-2x^{7}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - \frac{3x^{8}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - \frac{4x^{9}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - \frac{5x^{10}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - \frac{x^{6}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} + \frac{6x^{5}}{(x + x^{2} + x^{3} + x^{4} + x^{5})}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2x^{7}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - \frac{3x^{8}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - \frac{4x^{9}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - \frac{5x^{10}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - \frac{x^{6}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} + \frac{6x^{5}}{(x + x^{2} + x^{3} + x^{4} + x^{5})}\right)}{dx}\\=&-2(\frac{-2(1 + 2x + 3x^{2} + 4x^{3} + 5x^{4})}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}})x^{7} - \frac{2*7x^{6}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - 3(\frac{-2(1 + 2x + 3x^{2} + 4x^{3} + 5x^{4})}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}})x^{8} - \frac{3*8x^{7}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - 4(\frac{-2(1 + 2x + 3x^{2} + 4x^{3} + 5x^{4})}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}})x^{9} - \frac{4*9x^{8}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - 5(\frac{-2(1 + 2x + 3x^{2} + 4x^{3} + 5x^{4})}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}})x^{10} - \frac{5*10x^{9}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - (\frac{-2(1 + 2x + 3x^{2} + 4x^{3} + 5x^{4})}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}})x^{6} - \frac{6x^{5}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} + 6(\frac{-(1 + 2x + 3x^{2} + 4x^{3} + 5x^{4})}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}})x^{5} + \frac{6*5x^{4}}{(x + x^{2} + x^{3} + x^{4} + x^{5})}\\=&\frac{20x^{8}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}} + \frac{40x^{9}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}} + \frac{70x^{10}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}} + \frac{88x^{11}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}} - \frac{26x^{6}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} + \frac{92x^{12}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}} - \frac{42x^{7}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} + \frac{80x^{13}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}} - \frac{60x^{8}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} + \frac{50x^{14}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}} + \frac{8x^{7}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}} - \frac{80x^{9}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} + \frac{2x^{6}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{3}} - \frac{12x^{5}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} + \frac{30x^{4}}{(x + x^{2} + x^{3} + x^{4} + x^{5})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return