There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(x) + \frac{3}{(4{x}^{2})} - \frac{1}{({e}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x) + \frac{\frac{3}{4}}{x^{2}} - {e}^{(-x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x) + \frac{\frac{3}{4}}{x^{2}} - {e}^{(-x)}\right)}{dx}\\=&\frac{1}{(x)} + \frac{\frac{3}{4}*-2}{x^{3}} - ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))\\=&\frac{1}{x} - \frac{3}{2x^{3}} + {e}^{(-x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !