There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 5x - sqrt(2)sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 5x - sin(x)sqrt(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 5x - sin(x)sqrt(2)\right)}{dx}\\=&5 - cos(x)sqrt(2) - sin(x)*0*\frac{1}{2}*2^{\frac{1}{2}}\\=& - cos(x)sqrt(2) + 5\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - cos(x)sqrt(2) + 5\right)}{dx}\\=& - -sin(x)sqrt(2) - cos(x)*0*\frac{1}{2}*2^{\frac{1}{2}} + 0\\=&sin(x)sqrt(2)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( sin(x)sqrt(2)\right)}{dx}\\=&cos(x)sqrt(2) + sin(x)*0*\frac{1}{2}*2^{\frac{1}{2}}\\=&cos(x)sqrt(2)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( cos(x)sqrt(2)\right)}{dx}\\=&-sin(x)sqrt(2) + cos(x)*0*\frac{1}{2}*2^{\frac{1}{2}}\\=& - sin(x)sqrt(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !