There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ (a{x}^{3} + 1)(b{x}^{5} + 3)(c{x}^{7} + 5)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = abcx^{15} + 5abx^{8} + 3acx^{10} + 15ax^{3} + bcx^{12} + 5bx^{5} + 3cx^{7} + 15\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( abcx^{15} + 5abx^{8} + 3acx^{10} + 15ax^{3} + bcx^{12} + 5bx^{5} + 3cx^{7} + 15\right)}{dx}\\=&abc*15x^{14} + 5ab*8x^{7} + 3ac*10x^{9} + 15a*3x^{2} + bc*12x^{11} + 5b*5x^{4} + 3c*7x^{6} + 0\\=&15abcx^{14} + 40abx^{7} + 30acx^{9} + 45ax^{2} + 12bcx^{11} + 25bx^{4} + 21cx^{6}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 15abcx^{14} + 40abx^{7} + 30acx^{9} + 45ax^{2} + 12bcx^{11} + 25bx^{4} + 21cx^{6}\right)}{dx}\\=&15abc*14x^{13} + 40ab*7x^{6} + 30ac*9x^{8} + 45a*2x + 12bc*11x^{10} + 25b*4x^{3} + 21c*6x^{5}\\=&210abcx^{13} + 280abx^{6} + 270acx^{8} + 90ax + 132bcx^{10} + 100bx^{3} + 126cx^{5}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 210abcx^{13} + 280abx^{6} + 270acx^{8} + 90ax + 132bcx^{10} + 100bx^{3} + 126cx^{5}\right)}{dx}\\=&210abc*13x^{12} + 280ab*6x^{5} + 270ac*8x^{7} + 90a + 132bc*10x^{9} + 100b*3x^{2} + 126c*5x^{4}\\=&2730abcx^{12} + 1680abx^{5} + 2160acx^{7} + 90a + 1320bcx^{9} + 300bx^{2} + 630cx^{4}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !