There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ln(3 + x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x + 3)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x + 3)\right)}{dx}\\=&\frac{(1 + 0)}{(x + 3)}\\=&\frac{1}{(x + 3)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(x + 3)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + 3)^{2}})\\=&\frac{-1}{(x + 3)^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{(x + 3)^{2}}\right)}{dx}\\=&-(\frac{-2(1 + 0)}{(x + 3)^{3}})\\=&\frac{2}{(x + 3)^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{(x + 3)^{3}}\right)}{dx}\\=&2(\frac{-3(1 + 0)}{(x + 3)^{4}})\\=&\frac{-6}{(x + 3)^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !