Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{2} - ({(sin(x))}^{2})({(cos(x))}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2} - sin^{2}(x)cos^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2} - sin^{2}(x)cos^{2}(x)\right)}{dx}\\=&2x - 2sin(x)cos(x)cos^{2}(x) - sin^{2}(x)*-2cos(x)sin(x)\\=&2x - 2sin(x)cos^{3}(x) + 2sin^{3}(x)cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2x - 2sin(x)cos^{3}(x) + 2sin^{3}(x)cos(x)\right)}{dx}\\=&2 - 2cos(x)cos^{3}(x) - 2sin(x)*-3cos^{2}(x)sin(x) + 2*3sin^{2}(x)cos(x)cos(x) + 2sin^{3}(x)*-sin(x)\\=& - 2cos^{4}(x) + 12sin^{2}(x)cos^{2}(x) - 2sin^{4}(x) + 2\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - 2cos^{4}(x) + 12sin^{2}(x)cos^{2}(x) - 2sin^{4}(x) + 2\right)}{dx}\\=& - 2*-4cos^{3}(x)sin(x) + 12*2sin(x)cos(x)cos^{2}(x) + 12sin^{2}(x)*-2cos(x)sin(x) - 2*4sin^{3}(x)cos(x) + 0\\=&32sin(x)cos^{3}(x) - 32sin^{3}(x)cos(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 32sin(x)cos^{3}(x) - 32sin^{3}(x)cos(x)\right)}{dx}\\=&32cos(x)cos^{3}(x) + 32sin(x)*-3cos^{2}(x)sin(x) - 32*3sin^{2}(x)cos(x)cos(x) - 32sin^{3}(x)*-sin(x)\\=&32cos^{4}(x) - 192sin^{2}(x)cos^{2}(x) + 32sin^{4}(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return