There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(\frac{1}{(1 + {x}^{5})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(\frac{1}{(x^{5} + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(\frac{1}{(x^{5} + 1)})\right)}{dx}\\=&cos(\frac{1}{(x^{5} + 1)})(\frac{-(5x^{4} + 0)}{(x^{5} + 1)^{2}})\\=&\frac{-5x^{4}cos(\frac{1}{(x^{5} + 1)})}{(x^{5} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !