Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {{2}^{x}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {2}^{(2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{(2x)}\right)}{dx}\\=&({2}^{(2x)}((2)ln(2) + \frac{(2x)(0)}{(2)}))\\=&2 * {2}^{(2x)}ln(2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2 * {2}^{(2x)}ln(2)\right)}{dx}\\=&2({2}^{(2x)}((2)ln(2) + \frac{(2x)(0)}{(2)}))ln(2) + \frac{2 * {2}^{(2x)}*0}{(2)}\\=&4 * {2}^{(2x)}ln^{2}(2)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 4 * {2}^{(2x)}ln^{2}(2)\right)}{dx}\\=&4({2}^{(2x)}((2)ln(2) + \frac{(2x)(0)}{(2)}))ln^{2}(2) + \frac{4 * {2}^{(2x)}*2ln(2)*0}{(2)}\\=&8 * {2}^{(2x)}ln^{3}(2)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 8 * {2}^{(2x)}ln^{3}(2)\right)}{dx}\\=&8({2}^{(2x)}((2)ln(2) + \frac{(2x)(0)}{(2)}))ln^{3}(2) + \frac{8 * {2}^{(2x)}*3ln^{2}(2)*0}{(2)}\\=&16 * {2}^{(2x)}ln^{4}(2)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return