There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{\frac{1}{(1 + ln(x))}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{\frac{1}{(ln(x) + 1)}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{\frac{1}{(ln(x) + 1)}}\right)}{dx}\\=&({x}^{\frac{1}{(ln(x) + 1)}}(((\frac{-(\frac{1}{(x)} + 0)}{(ln(x) + 1)^{2}}))ln(x) + \frac{(\frac{1}{(ln(x) + 1)})(1)}{(x)}))\\=&\frac{-{x}^{\frac{1}{(ln(x) + 1)}}ln(x)}{(ln(x) + 1)^{2}x} + \frac{{x}^{\frac{1}{(ln(x) + 1)}}}{(ln(x) + 1)x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !