Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2x + 1)}{(3x - 3{x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x}{(3x - 3x^{2})} + \frac{1}{(3x - 3x^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x}{(3x - 3x^{2})} + \frac{1}{(3x - 3x^{2})}\right)}{dx}\\=&2(\frac{-(3 - 3*2x)}{(3x - 3x^{2})^{2}})x + \frac{2}{(3x - 3x^{2})} + (\frac{-(3 - 3*2x)}{(3x - 3x^{2})^{2}})\\=&\frac{12x^{2}}{(3x - 3x^{2})^{2}} + \frac{2}{(3x - 3x^{2})} - \frac{3}{(3x - 3x^{2})^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return