There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(x - ln(1 + x))}{(\frac{({x}^{2})}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2ln(x + 1)}{x^{2}} + \frac{2}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2ln(x + 1)}{x^{2}} + \frac{2}{x}\right)}{dx}\\=& - \frac{2*-2ln(x + 1)}{x^{3}} - \frac{2(1 + 0)}{x^{2}(x + 1)} + \frac{2*-1}{x^{2}}\\=&\frac{4ln(x + 1)}{x^{3}} - \frac{2}{(x + 1)x^{2}} - \frac{2}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !