Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x - 4){(x + 1)}^{(\frac{2}{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x(x + 1)^{\frac{2}{3}} - 4(x + 1)^{\frac{2}{3}}\right)}{dx}\\=&(x + 1)^{\frac{2}{3}} + x((x + 1)^{\frac{2}{3}}((0)ln(x + 1) + \frac{(\frac{2}{3})(1 + 0)}{(x + 1)})) - 4((x + 1)^{\frac{2}{3}}((0)ln(x + 1) + \frac{(\frac{2}{3})(1 + 0)}{(x + 1)}))\\=&\frac{2(x + 1)^{\frac{2}{3}}x}{3(x + 1)} - \frac{8(x + 1)^{\frac{2}{3}}}{3(x + 1)} + (x + 1)^{\frac{2}{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return