There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arctan(\frac{tan(x)}{sqrt(2)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(\frac{tan(x)}{sqrt(2)})\right)}{dx}\\=&(\frac{(\frac{sec^{2}(x)(1)}{sqrt(2)} + \frac{tan(x)*-0*\frac{1}{2}*2^{\frac{1}{2}}}{(2)})}{(1 + (\frac{tan(x)}{sqrt(2)})^{2})})\\=&\frac{sec^{2}(x)}{(\frac{tan^{2}(x)}{sqrt(2)^{2}} + 1)sqrt(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !