Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ {x}^{n}ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ \\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&\frac{87178291200n{x}^{n}ln(x)}{x^{15}} - \frac{283465647360n^{2}{x}^{n}ln(x)}{x^{15}} + \frac{392156797824n^{3}{x}^{n}ln(x)}{x^{15}} - \frac{310989260400n^{4}{x}^{n}ln(x)}{x^{15}} + \frac{159721605680n^{5}{x}^{n}ln(x)}{x^{15}} - \frac{56663366760n^{6}{x}^{n}ln(x)}{x^{15}} + \frac{14409322928n^{7}{x}^{n}ln(x)}{x^{15}} - \frac{2681453775n^{8}{x}^{n}ln(x)}{x^{15}} + \frac{368411615n^{9}{x}^{n}ln(x)}{x^{15}} - \frac{37312275n^{10}{x}^{n}ln(x)}{x^{15}} + \frac{2749747n^{11}{x}^{n}ln(x)}{x^{15}} - \frac{143325n^{12}{x}^{n}ln(x)}{x^{15}} + \frac{5005n^{13}{x}^{n}ln(x)}{x^{15}} - \frac{105n^{14}{x}^{n}ln(x)}{x^{15}} + \frac{n^{15}{x}^{n}ln(x)}{x^{15}} + \frac{3315704535n^{8}{x}^{n}}{x^{15}} - \frac{566931294720n{x}^{n}}{x^{15}} - \frac{373122750n^{9}{x}^{n}}{x^{15}} - \frac{339980200560n^{5}{x}^{n}}{x^{15}} + \frac{30247217n^{10}{x}^{n}}{x^{15}} - \frac{1243957041600n^{3}{x}^{n}}{x^{15}} - \frac{1719900n^{11}{x}^{n}}{x^{15}} + \frac{100865260496n^{6}{x}^{n}}{x^{15}} + \frac{65065n^{12}{x}^{n}}{x^{15}} + \frac{1176470393472n^{2}{x}^{n}}{x^{15}} - \frac{1470n^{13}{x}^{n}}{x^{15}} - \frac{21451630200n^{7}{x}^{n}}{x^{15}} + \frac{798608028400n^{4}{x}^{n}}{x^{15}} + \frac{15n^{14}{x}^{n}}{x^{15}} + \frac{87178291200{x}^{n}}{x^{15}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return