Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x - a)}^{2}{e}^{(\frac{x}{a})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}{e}^{(\frac{x}{a})} - 2ax{e}^{(\frac{x}{a})} + a^{2}{e}^{(\frac{x}{a})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}{e}^{(\frac{x}{a})} - 2ax{e}^{(\frac{x}{a})} + a^{2}{e}^{(\frac{x}{a})}\right)}{dx}\\=&2x{e}^{(\frac{x}{a})} + x^{2}({e}^{(\frac{x}{a})}((\frac{1}{a})ln(e) + \frac{(\frac{x}{a})(0)}{(e)})) - 2a{e}^{(\frac{x}{a})} - 2ax({e}^{(\frac{x}{a})}((\frac{1}{a})ln(e) + \frac{(\frac{x}{a})(0)}{(e)})) + a^{2}({e}^{(\frac{x}{a})}((\frac{1}{a})ln(e) + \frac{(\frac{x}{a})(0)}{(e)}))\\=&\frac{x^{2}{e}^{(\frac{x}{a})}}{a} - a{e}^{(\frac{x}{a})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return