Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{({(\frac{c}{x})}^{b} + 1)})(a - d) + d\ with\ respect\ to\ a:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a}{((\frac{c}{x})^{b} + 1)} - \frac{d}{((\frac{c}{x})^{b} + 1)} + d\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a}{((\frac{c}{x})^{b} + 1)} - \frac{d}{((\frac{c}{x})^{b} + 1)} + d\right)}{da}\\=&(\frac{-(((\frac{c}{x})^{b}((0)ln(\frac{c}{x}) + \frac{(b)(0)}{(\frac{c}{x})})) + 0)}{((\frac{c}{x})^{b} + 1)^{2}})a + \frac{1}{((\frac{c}{x})^{b} + 1)} - (\frac{-(((\frac{c}{x})^{b}((0)ln(\frac{c}{x}) + \frac{(b)(0)}{(\frac{c}{x})})) + 0)}{((\frac{c}{x})^{b} + 1)^{2}})d + 0 + 0\\=&\frac{1}{((\frac{c}{x})^{b} + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return