There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ s(s + 1)(s + \frac{7}{2})({s}^{2} + 6s + 13)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = s^{5} + \frac{21}{2}s^{4} + \frac{87}{2}s^{3} + \frac{159}{2}s^{2} + \frac{91}{2}s\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( s^{5} + \frac{21}{2}s^{4} + \frac{87}{2}s^{3} + \frac{159}{2}s^{2} + \frac{91}{2}s\right)}{dx}\\=&0 + 0 + 0 + 0 + 0\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !