There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{(1 - x*2)}{(1 + x*2)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{-2x}{(2x + 1)} + \frac{1}{(2x + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{-2x}{(2x + 1)} + \frac{1}{(2x + 1)})\right)}{dx}\\=&\frac{(-2(\frac{-(2 + 0)}{(2x + 1)^{2}})x - \frac{2}{(2x + 1)} + (\frac{-(2 + 0)}{(2x + 1)^{2}}))}{(\frac{-2x}{(2x + 1)} + \frac{1}{(2x + 1)})}\\=&\frac{4x}{(2x + 1)^{2}(\frac{-2x}{(2x + 1)} + \frac{1}{(2x + 1)})} - \frac{2}{(2x + 1)^{2}(\frac{-2x}{(2x + 1)} + \frac{1}{(2x + 1)})} - \frac{2}{(\frac{-2x}{(2x + 1)} + \frac{1}{(2x + 1)})(2x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !