There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln(1 - x*2)}{(1 + x*2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(-2x + 1)}{(2x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(-2x + 1)}{(2x + 1)}\right)}{dx}\\=&(\frac{-(2 + 0)}{(2x + 1)^{2}})ln(-2x + 1) + \frac{(-2 + 0)}{(2x + 1)(-2x + 1)}\\=&\frac{-2ln(-2x + 1)}{(2x + 1)^{2}} - \frac{2}{(-2x + 1)(2x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !