There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{b(a - c - ft)}{(b + e)}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ba}{(b + e)} - \frac{bc}{(b + e)} - \frac{bft}{(b + e)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ba}{(b + e)} - \frac{bc}{(b + e)} - \frac{bft}{(b + e)}\right)}{dt}\\=&(\frac{-(0 + 0)}{(b + e)^{2}})ba + 0 - (\frac{-(0 + 0)}{(b + e)^{2}})bc + 0 - (\frac{-(0 + 0)}{(b + e)^{2}})bft - \frac{bf}{(b + e)}\\=& - \frac{bf}{(b + e)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !