There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{(x - 1)(x - 2)(x - 4)}{(x - 3)})}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}((\frac{-(1 + 0)}{(x - 3)^{2}})x^{3} + \frac{3x^{2}}{(x - 3)} - 7(\frac{-(1 + 0)}{(x - 3)^{2}})x^{2} - \frac{7*2x}{(x - 3)} + 14(\frac{-(1 + 0)}{(x - 3)^{2}})x + \frac{14}{(x - 3)} - 8(\frac{-(1 + 0)}{(x - 3)^{2}}))}{(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}})\\=&\frac{-x^{3}}{2(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)^{2}} + \frac{3x^{2}}{2(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)} + \frac{7x^{2}}{2(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)^{2}} - \frac{7x}{(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)} - \frac{7x}{(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)^{2}} + \frac{4}{(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)^{2}} + \frac{7}{(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !