Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ xarcsin(2x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xarcsin(2x)\right)}{dx}\\=&arcsin(2x) + x(\frac{(2)}{((1 - (2x)^{2})^{\frac{1}{2}})})\\=&arcsin(2x) + \frac{2x}{(-4x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( arcsin(2x) + \frac{2x}{(-4x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{(2)}{((1 - (2x)^{2})^{\frac{1}{2}})}) + 2(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})x + \frac{2}{(-4x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{8x^{2}}{(-4x^{2} + 1)^{\frac{3}{2}}} + \frac{2}{(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{2}{(-4x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return