There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(6{x}^{2} + 8x + 8)}{sqrt(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{6x^{2}}{sqrt(x)} + \frac{8x}{sqrt(x)} + \frac{8}{sqrt(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{6x^{2}}{sqrt(x)} + \frac{8x}{sqrt(x)} + \frac{8}{sqrt(x)}\right)}{dx}\\=&\frac{6*2x}{sqrt(x)} + \frac{6x^{2}*-\frac{1}{2}}{(x)(x)^{\frac{1}{2}}} + \frac{8}{sqrt(x)} + \frac{8x*-\frac{1}{2}}{(x)(x)^{\frac{1}{2}}} + \frac{8*-\frac{1}{2}}{(x)(x)^{\frac{1}{2}}}\\=&\frac{12x}{sqrt(x)} - 3x^{\frac{1}{2}} + \frac{8}{sqrt(x)} - \frac{4}{x^{\frac{1}{2}}} - \frac{4}{x^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !