There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{{x}^{{x}^{{x}^{x}}}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{{x}^{{x}^{{x}^{x}}}}\right)}{dx}\\=&({x}^{{x}^{{x}^{{x}^{x}}}}((({x}^{{x}^{{x}^{x}}}((({x}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(x) + \frac{({x}^{x})(1)}{(x)})))ln(x) + \frac{({x}^{{x}^{x}})(1)}{(x)})))ln(x) + \frac{({x}^{{x}^{{x}^{x}}})(1)}{(x)}))\\=&{x}^{x}{x}^{{x}^{x}}{x}^{{x}^{{x}^{x}}}{x}^{{x}^{{x}^{{x}^{x}}}}ln^{4}(x) + {x}^{x}{x}^{{x}^{x}}{x}^{{x}^{{x}^{x}}}{x}^{{x}^{{x}^{{x}^{x}}}}ln^{3}(x) + \frac{{x}^{x}{x}^{{x}^{x}}{x}^{{x}^{{x}^{x}}}{x}^{{x}^{{x}^{{x}^{x}}}}ln^{2}(x)}{x} + \frac{{x}^{{x}^{x}}{x}^{{x}^{{x}^{x}}}{x}^{{x}^{{x}^{{x}^{x}}}}ln(x)}{x} + \frac{{x}^{{x}^{{x}^{x}}}{x}^{{x}^{{x}^{{x}^{x}}}}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !