There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-b(a - c - ft)}{(b + e)}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-ba}{(b + e)} + \frac{bc}{(b + e)} + \frac{bft}{(b + e)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-ba}{(b + e)} + \frac{bc}{(b + e)} + \frac{bft}{(b + e)}\right)}{dt}\\=&-(\frac{-(0 + 0)}{(b + e)^{2}})ba + 0 + (\frac{-(0 + 0)}{(b + e)^{2}})bc + 0 + (\frac{-(0 + 0)}{(b + e)^{2}})bft + \frac{bf}{(b + e)}\\=&\frac{bf}{(b + e)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !