Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {(1 + x)}^{99}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x + 1)^{99}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x + 1)^{99}\right)}{dx}\\=&(99(x + 1)^{98}(1 + 0))\\=&99(x + 1)^{98}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 99(x + 1)^{98}\right)}{dx}\\=&99(98(x + 1)^{97}(1 + 0))\\=&9702(x + 1)^{97}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 9702(x + 1)^{97}\right)}{dx}\\=&9702(97(x + 1)^{96}(1 + 0))\\=&941094(x + 1)^{96}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 941094(x + 1)^{96}\right)}{dx}\\=&941094(96(x + 1)^{95}(1 + 0))\\=&90345024(x + 1)^{95}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return