Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 5 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 5th\ derivative\ of\ function\ sin(x)cos(x)tan(x)cot(x)csc(x)sec(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x)cos(x)tan(x)cot(x)sec(x)csc(x)\\\\ &\color{blue}{The\ 5th\ derivative\ of\ function:} \\=&305cos^{2}(x)tan(x)cot(x)sec(x)csc^{5}(x) - 305sin^{2}(x)tan(x)cot(x)sec(x)csc^{5}(x) + 305sin(x)cos(x)cot(x)sec^{3}(x)csc^{5}(x) - 61sin(x)cos(x)tan(x)sec(x)csc^{7}(x) + 305sin(x)cos(x)tan^{2}(x)cot(x)sec(x)csc^{5}(x) - 479sin(x)cos(x)tan(x)cot^{2}(x)sec(x)csc^{5}(x) - 100cos^{2}(x)sec^{3}(x)csc^{5}(x) - 360cos^{2}(x)cot^{2}(x)sec^{3}(x)csc^{3}(x) + 200sin(x)cos(x)tan(x)sec(x)csc^{5}(x) - 100cos^{2}(x)tan^{2}(x)sec(x)csc^{5}(x) + 750cos^{2}(x)tan(x)cot(x)sec^{3}(x)csc^{3}(x) + 150cos^{2}(x)tan^{3}(x)cot(x)sec(x)csc^{3}(x) - 360cos^{2}(x)tan^{2}(x)cot^{2}(x)sec(x)csc^{3}(x) + 290cos^{2}(x)tan(x)cot^{3}(x)sec(x)csc^{3}(x) - 200cos^{2}(x)tan(x)cot(x)sec(x)csc^{3}(x) + 200sin^{2}(x)tan(x)cot(x)sec(x)csc^{3}(x) - 600sin(x)cos(x)cot(x)sec^{3}(x)csc^{3}(x) - 250sin(x)cos(x)tan(x)sec^{3}(x)csc^{5}(x) - 600sin(x)cos(x)tan^{2}(x)cot(x)sec(x)csc^{3}(x) + 720sin(x)cos(x)tan(x)cot^{2}(x)sec(x)csc^{3}(x) + 100sin^{2}(x)sec^{3}(x)csc^{5}(x) + 360sin^{2}(x)cot^{2}(x)sec^{3}(x)csc^{3}(x) - 50sin(x)cos(x)tan^{3}(x)sec(x)csc^{5}(x) + 100sin^{2}(x)tan^{2}(x)sec(x)csc^{5}(x) - 750sin^{2}(x)tan(x)cot(x)sec^{3}(x)csc^{3}(x) - 150sin^{2}(x)tan^{3}(x)cot(x)sec(x)csc^{3}(x) + 360sin^{2}(x)tan^{2}(x)cot^{2}(x)sec(x)csc^{3}(x) - 290sin^{2}(x)tan(x)cot^{3}(x)sec(x)csc^{3}(x) + 600sin(x)cos(x)tan(x)sec^{3}(x)csc^{3}(x) + 250sin(x)cos(x)cot(x)sec^{5}(x)csc^{3}(x) + 120sin(x)cos(x)tan^{3}(x)sec(x)csc^{3}(x) + 900sin(x)cos(x)tan^{2}(x)cot(x)sec^{3}(x)csc^{3}(x) - 900sin(x)cos(x)tan(x)cot^{2}(x)sec^{3}(x)csc^{3}(x) + 290sin(x)cos(x)cot^{3}(x)sec^{3}(x)csc^{3}(x) - 80sin(x)cos(x)tan(x)sec(x)csc^{3}(x) + 50sin(x)cos(x)tan^{4}(x)cot(x)sec(x)csc^{3}(x) - 180sin(x)cos(x)tan^{3}(x)cot^{2}(x)sec(x)csc^{3}(x) + 290sin(x)cos(x)tan^{2}(x)cot^{3}(x)sec(x)csc^{3}(x) - 179sin(x)cos(x)tan(x)cot^{4}(x)sec(x)csc^{3}(x) + 80cos^{2}(x)sec^{3}(x)csc^{3}(x) - 80sin^{2}(x)sec^{3}(x)csc^{3}(x) - 305sin(x)cos(x)tan(x)sec^{5}(x)csc^{3}(x) - 290sin(x)cos(x)tan^{3}(x)sec^{3}(x)csc^{3}(x) - 100cos^{2}(x)sec^{5}(x)csc^{3}(x) - 360cos^{2}(x)tan^{2}(x)sec^{3}(x)csc^{3}(x) - 120sin(x)cos(x)cot^{3}(x)sec^{3}(x)csc(x) - 20cos^{2}(x)cot^{4}(x)sec^{3}(x)csc(x) - 5sin(x)cos(x)tan^{5}(x)sec(x)csc^{3}(x) + 80cos^{2}(x)tan^{2}(x)sec(x)csc^{3}(x) - 80sin^{2}(x)tan^{2}(x)sec(x)csc^{3}(x) - 20cos^{2}(x)tan^{4}(x)sec(x)csc^{3}(x) - 200cos^{2}(x)tan(x)cot(x)sec^{3}(x)csc(x) + 200sin^{2}(x)tan(x)cot(x)sec^{3}(x)csc(x) - 200sin(x)cos(x)cot(x)sec^{5}(x)csc(x) - 720sin(x)cos(x)tan^{2}(x)cot(x)sec^{3}(x)csc(x) + 600sin(x)cos(x)tan(x)cot^{2}(x)sec^{3}(x)csc(x) + 305cos^{2}(x)tan(x)cot(x)sec^{5}(x)csc(x) - 100cos^{2}(x)cot^{2}(x)sec^{5}(x)csc(x) + 290cos^{2}(x)tan^{3}(x)cot(x)sec^{3}(x)csc(x) - 360cos^{2}(x)tan^{2}(x)cot^{2}(x)sec^{3}(x)csc(x) + 150cos^{2}(x)tan(x)cot^{3}(x)sec^{3}(x)csc(x) - 40cos^{2}(x)tan^{3}(x)cot(x)sec(x)csc(x) + 40sin^{2}(x)tan^{3}(x)cot(x)sec(x)csc(x) - 40sin(x)cos(x)tan^{4}(x)cot(x)sec(x)csc(x) + 120sin(x)cos(x)tan^{3}(x)cot^{2}(x)sec(x)csc(x) + 5cos^{2}(x)tan^{5}(x)cot(x)sec(x)csc(x) - 20cos^{2}(x)tan^{4}(x)cot^{2}(x)sec(x)csc(x) + 30cos^{2}(x)tan^{3}(x)cot^{3}(x)sec(x)csc(x) + 80cos^{2}(x)tan^{2}(x)cot^{2}(x)sec(x)csc(x) - 80sin^{2}(x)tan^{2}(x)cot^{2}(x)sec(x)csc(x) - 120sin(x)cos(x)tan^{2}(x)cot^{3}(x)sec(x)csc(x) - 20cos^{2}(x)tan^{2}(x)cot^{4}(x)sec(x)csc(x) - 40cos^{2}(x)tan(x)cot^{3}(x)sec(x)csc(x) + 40sin^{2}(x)tan(x)cot^{3}(x)sec(x)csc(x) + 40sin(x)cos(x)tan(x)cot^{4}(x)sec(x)csc(x) + 5cos^{2}(x)tan(x)cot^{5}(x)sec(x)csc(x) + 16cos^{2}(x)tan(x)cot(x)sec(x)csc(x) - 16sin^{2}(x)tan(x)cot(x)sec(x)csc(x) + 80sin(x)cos(x)cot(x)sec^{3}(x)csc(x) + 80sin(x)cos(x)tan^{2}(x)cot(x)sec(x)csc(x) - 80sin(x)cos(x)tan(x)cot^{2}(x)sec(x)csc(x) + 80cos^{2}(x)cot^{2}(x)sec^{3}(x)csc(x) - 80sin^{2}(x)cot^{2}(x)sec^{3}(x)csc(x) + 100sin^{2}(x)sec^{5}(x)csc^{3}(x) + 360sin^{2}(x)tan^{2}(x)sec^{3}(x)csc^{3}(x) - 150sin^{2}(x)tan(x)cot^{3}(x)sec^{3}(x)csc(x) + 20sin^{2}(x)cot^{4}(x)sec^{3}(x)csc(x) + 20sin^{2}(x)tan^{4}(x)sec(x)csc^{3}(x) - 305sin^{2}(x)tan(x)cot(x)sec^{5}(x)csc(x) + 100sin^{2}(x)cot^{2}(x)sec^{5}(x)csc(x) - 290sin^{2}(x)tan^{3}(x)cot(x)sec^{3}(x)csc(x) + 360sin^{2}(x)tan^{2}(x)cot^{2}(x)sec^{3}(x)csc(x) - 5sin^{2}(x)tan^{5}(x)cot(x)sec(x)csc(x) + 20sin^{2}(x)tan^{4}(x)cot^{2}(x)sec(x)csc(x) - 30sin^{2}(x)tan^{3}(x)cot^{3}(x)sec(x)csc(x) + 20sin^{2}(x)tan^{2}(x)cot^{4}(x)sec(x)csc(x) - 5sin^{2}(x)tan(x)cot^{5}(x)sec(x)csc(x) + 61sin(x)cos(x)cot(x)sec^{7}(x)csc(x) + 479sin(x)cos(x)tan^{2}(x)cot(x)sec^{5}(x)csc(x) - 305sin(x)cos(x)tan(x)cot^{2}(x)sec^{5}(x)csc(x) + 50sin(x)cos(x)cot^{3}(x)sec^{5}(x)csc(x) + 179sin(x)cos(x)tan^{4}(x)cot(x)sec^{3}(x)csc(x) - 290sin(x)cos(x)tan^{3}(x)cot^{2}(x)sec^{3}(x)csc(x) + 180sin(x)cos(x)tan^{2}(x)cot^{3}(x)sec^{3}(x)csc(x) - 50sin(x)cos(x)tan(x)cot^{4}(x)sec^{3}(x)csc(x) + 5sin(x)cos(x)cot^{5}(x)sec^{3}(x)csc(x) + sin(x)cos(x)tan^{6}(x)cot(x)sec(x)csc(x) - 5sin(x)cos(x)tan^{5}(x)cot^{2}(x)sec(x)csc(x) + 10sin(x)cos(x)tan^{4}(x)cot^{3}(x)sec(x)csc(x) - 10sin(x)cos(x)tan^{3}(x)cot^{4}(x)sec(x)csc(x) + 5sin(x)cos(x)tan^{2}(x)cot^{5}(x)sec(x)csc(x) - sin(x)cos(x)tan(x)cot^{6}(x)sec(x)csc(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return