There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(x)cos(x)tan(x)cot(x)csc(x)sec(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x)cos(x)tan(x)cot(x)sec(x)csc(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x)cos(x)tan(x)cot(x)sec(x)csc(x)\right)}{dx}\\=&cos(x)cos(x)tan(x)cot(x)sec(x)csc(x) + sin(x)*-sin(x)tan(x)cot(x)sec(x)csc(x) + sin(x)cos(x)sec^{2}(x)(1)cot(x)sec(x)csc(x) + sin(x)cos(x)tan(x)*-csc^{2}(x)sec(x)csc(x) + sin(x)cos(x)tan(x)cot(x)sec(x)tan(x)csc(x) + sin(x)cos(x)tan(x)cot(x)sec(x)*-csc(x)cot(x)\\=&cos^{2}(x)tan(x)cot(x)sec(x)csc(x) - sin^{2}(x)tan(x)cot(x)sec(x)csc(x) + sin(x)cos(x)cot(x)sec^{3}(x)csc(x) - sin(x)cos(x)tan(x)sec(x)csc^{3}(x) + sin(x)cos(x)tan^{2}(x)cot(x)sec(x)csc(x) - sin(x)cos(x)tan(x)cot^{2}(x)sec(x)csc(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !