There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ lg(10 - x)lg(10 + x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = lg(-x + 10)lg(x + 10)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( lg(-x + 10)lg(x + 10)\right)}{dx}\\=&\frac{(-1 + 0)lg(x + 10)}{ln{10}(-x + 10)} + \frac{lg(-x + 10)(1 + 0)}{ln{10}(x + 10)}\\=&\frac{-lg(x + 10)}{(-x + 10)ln{10}} + \frac{lg(-x + 10)}{(x + 10)ln{10}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !