There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{2}(cos(\frac{1}{({x}^{2})}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}cos(\frac{1}{x^{2}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}cos(\frac{1}{x^{2}})\right)}{dx}\\=&2xcos(\frac{1}{x^{2}}) + \frac{x^{2}*-sin(\frac{1}{x^{2}})*-2}{x^{3}}\\=&2xcos(\frac{1}{x^{2}}) + \frac{2sin(\frac{1}{x^{2}})}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2xcos(\frac{1}{x^{2}}) + \frac{2sin(\frac{1}{x^{2}})}{x}\right)}{dx}\\=&2cos(\frac{1}{x^{2}}) + \frac{2x*-sin(\frac{1}{x^{2}})*-2}{x^{3}} + \frac{2*-sin(\frac{1}{x^{2}})}{x^{2}} + \frac{2cos(\frac{1}{x^{2}})*-2}{xx^{3}}\\=&2cos(\frac{1}{x^{2}}) + \frac{2sin(\frac{1}{x^{2}})}{x^{2}} - \frac{4cos(\frac{1}{x^{2}})}{x^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !