Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ xxxxx + 5xxxx + 6xxx + 78xx + 87x + 100 + \frac{99}{x} + \frac{98x}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} + 5x^{4} + 6x^{3} + 78x^{2} + \frac{99}{x} + 87x + 198\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} + 5x^{4} + 6x^{3} + 78x^{2} + \frac{99}{x} + 87x + 198\right)}{dx}\\=&5x^{4} + 5*4x^{3} + 6*3x^{2} + 78*2x + \frac{99*-1}{x^{2}} + 87 + 0\\=&5x^{4} + 20x^{3} + 18x^{2} + 156x - \frac{99}{x^{2}} + 87\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5x^{4} + 20x^{3} + 18x^{2} + 156x - \frac{99}{x^{2}} + 87\right)}{dx}\\=&5*4x^{3} + 20*3x^{2} + 18*2x + 156 - \frac{99*-2}{x^{3}} + 0\\=&20x^{3} + 60x^{2} + 36x + \frac{198}{x^{3}} + 156\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 20x^{3} + 60x^{2} + 36x + \frac{198}{x^{3}} + 156\right)}{dx}\\=&20*3x^{2} + 60*2x + 36 + \frac{198*-3}{x^{4}} + 0\\=&60x^{2} + 120x - \frac{594}{x^{4}} + 36\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 60x^{2} + 120x - \frac{594}{x^{4}} + 36\right)}{dx}\\=&60*2x + 120 - \frac{594*-4}{x^{5}} + 0\\=&120x + \frac{2376}{x^{5}} + 120\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return