There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(2{x}^{5}(1 - x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(2x^{5} - 2x^{6})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(2x^{5} - 2x^{6})\right)}{dx}\\=&\frac{(2*5x^{4} - 2*6x^{5})}{(2x^{5} - 2x^{6})}\\=&\frac{10x^{4}}{(2x^{5} - 2x^{6})} - \frac{12x^{5}}{(2x^{5} - 2x^{6})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !