There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {-3}^{(-x - y)}ln(3)\ with\ respect\ to\ y:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {-3}^{(-x - y)}ln(3)\right)}{dy}\\=&({-3}^{(-x - y)}((0 - 1)ln(-3) + \frac{(-x - y)(0)}{(-3)}))ln(3) + \frac{{-3}^{(-x - y)}*0}{(3)}\\=&-{-3}^{(-x - y)}ln(-3)ln(3)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !