There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{x}{(100 + x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(x + 100)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(x + 100)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + 100)^{2}})x + \frac{1}{(x + 100)}\\=&\frac{-x}{(x + 100)^{2}} + \frac{1}{(x + 100)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-x}{(x + 100)^{2}} + \frac{1}{(x + 100)}\right)}{dx}\\=&-(\frac{-2(1 + 0)}{(x + 100)^{3}})x - \frac{1}{(x + 100)^{2}} + (\frac{-(1 + 0)}{(x + 100)^{2}})\\=&\frac{2x}{(x + 100)^{3}} - \frac{2}{(x + 100)^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2x}{(x + 100)^{3}} - \frac{2}{(x + 100)^{2}}\right)}{dx}\\=&2(\frac{-3(1 + 0)}{(x + 100)^{4}})x + \frac{2}{(x + 100)^{3}} - 2(\frac{-2(1 + 0)}{(x + 100)^{3}})\\=&\frac{-6x}{(x + 100)^{4}} + \frac{6}{(x + 100)^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-6x}{(x + 100)^{4}} + \frac{6}{(x + 100)^{3}}\right)}{dx}\\=&-6(\frac{-4(1 + 0)}{(x + 100)^{5}})x - \frac{6}{(x + 100)^{4}} + 6(\frac{-3(1 + 0)}{(x + 100)^{4}})\\=&\frac{24x}{(x + 100)^{5}} - \frac{24}{(x + 100)^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !