There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (1 + (l - 2)x + (1 - 2l){x}^{2} + l{x}^{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = lx - 2x + x^{2} - 2lx^{2} + lx^{3} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( lx - 2x + x^{2} - 2lx^{2} + lx^{3} + 1\right)}{dx}\\=&l - 2 + 2x - 2l*2x + l*3x^{2} + 0\\=& - 4lx + 2x + 3lx^{2} + l - 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - 4lx + 2x + 3lx^{2} + l - 2\right)}{dx}\\=& - 4l + 2 + 3l*2x + 0 + 0\\=&6lx - 4l + 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !