There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ln(3){x}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4}ln(3)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4}ln(3)\right)}{dx}\\=&4x^{3}ln(3) + \frac{x^{4}*0}{(3)}\\=&4x^{3}ln(3)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x^{3}ln(3)\right)}{dx}\\=&4*3x^{2}ln(3) + \frac{4x^{3}*0}{(3)}\\=&12x^{2}ln(3)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 12x^{2}ln(3)\right)}{dx}\\=&12*2xln(3) + \frac{12x^{2}*0}{(3)}\\=&24xln(3)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 24xln(3)\right)}{dx}\\=&24ln(3) + \frac{24x*0}{(3)}\\=&24ln(3)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !