There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(3.93x + 1610)}{(x + 1400)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3.93x}{(x + 1400)} + \frac{1610}{(x + 1400)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3.93x}{(x + 1400)} + \frac{1610}{(x + 1400)}\right)}{dx}\\=&3.93(\frac{-(1 + 0)}{(x + 1400)^{2}})x + \frac{3.93}{(x + 1400)} + 1610(\frac{-(1 + 0)}{(x + 1400)^{2}})\\=&\frac{-3.93x}{(x + 1400)(x + 1400)} - \frac{1610}{(x + 1400)(x + 1400)} + \frac{3.93}{(x + 1400)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !