There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{3x}{8} + \frac{sin(4x)}{32} + \frac{sin(2x)}{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3}{8}x + \frac{1}{32}sin(4x) + \frac{1}{4}sin(2x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3}{8}x + \frac{1}{32}sin(4x) + \frac{1}{4}sin(2x)\right)}{dx}\\=&\frac{3}{8} + \frac{1}{32}cos(4x)*4 + \frac{1}{4}cos(2x)*2\\=&\frac{cos(4x)}{8} + \frac{cos(2x)}{2} + \frac{3}{8}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !