Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ xx + 2xxx - e^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{3} + x^{2} - e^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{3} + x^{2} - e^{x}\right)}{dx}\\=&2*3x^{2} + 2x - e^{x}\\=&6x^{2} + 2x - e^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 6x^{2} + 2x - e^{x}\right)}{dx}\\=&6*2x + 2 - e^{x}\\=&12x - e^{x} + 2\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 12x - e^{x} + 2\right)}{dx}\\=&12 - e^{x} + 0\\=& - e^{x} + 12\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - e^{x} + 12\right)}{dx}\\=& - e^{x} + 0\\=& - e^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return