There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ (x*3) - x - ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x - ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x - ln(x)\right)}{dx}\\=&2 - \frac{1}{(x)}\\=& - \frac{1}{x} + 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{1}{x} + 2\right)}{dx}\\=& - \frac{-1}{x^{2}} + 0\\=&\frac{1}{x^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{x^{2}}\right)}{dx}\\=&\frac{-2}{x^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !