There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(x + (\frac{y}{(2x)}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x + \frac{\frac{1}{2}y}{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x + \frac{\frac{1}{2}y}{x})\right)}{dx}\\=&\frac{(1 + \frac{\frac{1}{2}y*-1}{x^{2}})}{(x + \frac{\frac{1}{2}y}{x})}\\=&\frac{-y}{2(x + \frac{\frac{1}{2}y}{x})x^{2}} + \frac{1}{(x + \frac{\frac{1}{2}y}{x})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !