There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {cth(2)}^{({e}^{2}{\frac{1}{x}}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {cth(2)}^{(\frac{e^{2}}{x^{2}})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {cth(2)}^{(\frac{e^{2}}{x^{2}})}\right)}{dx}\\=&({cth(2)}^{(\frac{e^{2}}{x^{2}})}((\frac{-2e^{2}}{x^{3}} + \frac{2e*0}{x^{2}})ln(cth(2)) + \frac{(\frac{e^{2}}{x^{2}})((1 - cth^{2}(2))*0)}{(cth(2))}))\\=&\frac{-2{cth(2)}^{(\frac{e^{2}}{x^{2}})}e^{2}ln(cth(2))}{x^{3}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2{cth(2)}^{(\frac{e^{2}}{x^{2}})}e^{2}ln(cth(2))}{x^{3}}\right)}{dx}\\=&\frac{-2*-3{cth(2)}^{(\frac{e^{2}}{x^{2}})}e^{2}ln(cth(2))}{x^{4}} - \frac{2({cth(2)}^{(\frac{e^{2}}{x^{2}})}((\frac{-2e^{2}}{x^{3}} + \frac{2e*0}{x^{2}})ln(cth(2)) + \frac{(\frac{e^{2}}{x^{2}})((1 - cth^{2}(2))*0)}{(cth(2))}))e^{2}ln(cth(2))}{x^{3}} - \frac{2{cth(2)}^{(\frac{e^{2}}{x^{2}})}*2e*0ln(cth(2))}{x^{3}} - \frac{2{cth(2)}^{(\frac{e^{2}}{x^{2}})}e^{2}(1 - cth^{2}(2))*0}{x^{3}(cth(2))}\\=&\frac{6{cth(2)}^{(\frac{e^{2}}{x^{2}})}e^{2}ln(cth(2))}{x^{4}} + \frac{4{cth(2)}^{(\frac{e^{2}}{x^{2}})}e^{4}ln^{2}(cth(2))}{x^{6}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !