There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ cos(x) + sin(x) + {e}^{x} + {x}^{e}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(x) + sin(x) + {e}^{x} + {x}^{e}\right)}{dx}\\=&-sin(x) + cos(x) + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + ({x}^{e}((0)ln(x) + \frac{(e)(1)}{(x)}))\\=&-sin(x) + cos(x) + {e}^{x} + \frac{{x}^{e}e}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !