There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(8 + 14{x}^{2}) + \frac{9}{2}x + \frac{1}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(14x^{2} + 8) + \frac{9}{2}x + \frac{1}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(14x^{2} + 8) + \frac{9}{2}x + \frac{1}{x}\right)}{dx}\\=&\frac{(14*2x + 0)*\frac{1}{2}}{(14x^{2} + 8)^{\frac{1}{2}}} + \frac{9}{2} + \frac{-1}{x^{2}}\\=&\frac{14x}{(14x^{2} + 8)^{\frac{1}{2}}} - \frac{1}{x^{2}} + \frac{9}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !