There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 3{x}^{4} + 5{x}^{3} + 2{x}^{2} + 4x + 6\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3x^{4} + 5x^{3} + 2x^{2} + 4x + 6\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3x^{4} + 5x^{3} + 2x^{2} + 4x + 6\right)}{dx}\\=&3*4x^{3} + 5*3x^{2} + 2*2x + 4 + 0\\=&12x^{3} + 15x^{2} + 4x + 4\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 12x^{3} + 15x^{2} + 4x + 4\right)}{dx}\\=&12*3x^{2} + 15*2x + 4 + 0\\=&36x^{2} + 30x + 4\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 36x^{2} + 30x + 4\right)}{dx}\\=&36*2x + 30 + 0\\=&72x + 30\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 72x + 30\right)}{dx}\\=&72 + 0\\=&72\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !