Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xln(x) - (\frac{2(x)}{e^{-1}})ln(\frac{2(x)}{e^{-1}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(x) - \frac{2xln(\frac{2x}{e^{-1}})}{e^{-1}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(x) - \frac{2xln(\frac{2x}{e^{-1}})}{e^{-1}}\right)}{dx}\\=&ln(x) + \frac{x}{(x)} - \frac{2ln(\frac{2x}{e^{-1}})}{e^{-1}} - \frac{2x*-e^{-1}*0ln(\frac{2x}{e^{-1}})}{e^{{-1}*{2}}} - \frac{2x(\frac{2}{e^{-1}} + \frac{2x*-e^{-1}*0}{e^{{-1}*{2}}})}{e^{-1}(\frac{2x}{e^{-1}})}\\=&ln(x) - \frac{2ln(\frac{2x}{e^{-1}})}{e^{-1}} - \frac{2}{e^{-1}} + 1\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return