Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xln(x) - ((\frac{2}{e^{-x}})ln((\frac{2}{e^{-x}})))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(x) - \frac{2ln(\frac{2}{e^{-x}})}{e^{-x}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(x) - \frac{2ln(\frac{2}{e^{-x}})}{e^{-x}}\right)}{dx}\\=&ln(x) + \frac{x}{(x)} - \frac{2*-e^{-x}*-ln(\frac{2}{e^{-x}})}{e^{{-x}*{2}}} - \frac{2*2*-e^{-x}*-1}{e^{-x}(\frac{2}{e^{-x}})e^{{-x}*{2}}}\\=&ln(x) - \frac{2ln(\frac{2}{e^{-x}})}{e^{-x}} - \frac{2}{e^{-x}} + 1\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return