Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{2}^{x}}^{(x - a)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {{2}^{x}}^{(x - a)}\right)}{dx}\\=&({{2}^{x}}^{(x - a)}((1 + 0)ln({2}^{x}) + \frac{(x - a)(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})))}{({2}^{x})}))\\=&{{2}^{x}}^{(x - a)}ln({2}^{x}) + x{{2}^{x}}^{(x - a)}ln(2) - a{{2}^{x}}^{(x - a)}ln(2)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return