Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(99999x - 342*99999)}{(x - 5000)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{99999x}{(x - 5000)} - \frac{34199658}{(x - 5000)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{99999x}{(x - 5000)} - \frac{34199658}{(x - 5000)}\right)}{dx}\\=&99999(\frac{-(1 + 0)}{(x - 5000)^{2}})x + \frac{99999}{(x - 5000)} - 34199658(\frac{-(1 + 0)}{(x - 5000)^{2}})\\=&\frac{-99999x}{(x - 5000)^{2}} + \frac{34199658}{(x - 5000)^{2}} + \frac{99999}{(x - 5000)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return